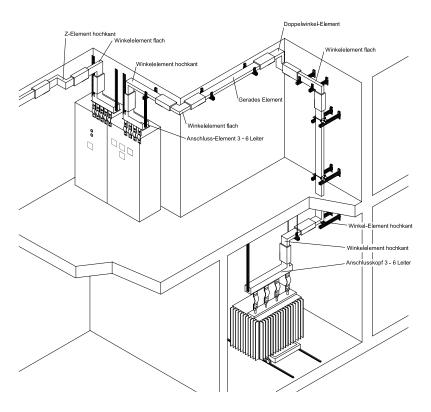

Niederspannungs-Schienenverteiler LANZ HE

2.5.2

mit giessharzisolierten Kupfer- und Aluminium-Leitern

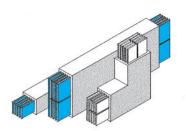


Niederspannungs-Schienenverteiler LANZ HE IP68

Anwendungsbeispiel

Allgemeine technische Daten

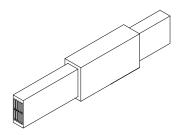
Bezeichnung	Daten, Werte	Normen
Anzahl Leiter Leitermaterial	3, 4, 5 oder 6 Aluminium oder Kupfer	
N-Leiterquerschnitte PE-Leiterquerschnitt	100% oder 200% 100% vom Aussenleiter	
Bauartnachweis* (kompletter Schienenverteiler)	Grundnorm Produktenorm	DIN EN 61439-1 und DIN EN 61439-6
Betriebsbedingungen (Innenraum und Freiluft)	+35°C im 24-h-Mittel max. + 40°C, min25°C	DIN EN 61439-1
Schutzart (IP-Code)	IP68 für Schienenelemente und Kupplungen	DIN EN 60529
Bemessungsstoss- spannungsfestigkeit 1.2/50 μs	12 kV @ 2000 m	DIN EN 61439-1
Montagelage	horizontal oder vertikal	DIN EN 61439-6


Feuerwiderstandsklasse (Funktionserhalt)	E90 (nur zusammen mit 20 mm PROMATECT-200-Platten)	DIN 4102-12 (ISO 834-1)
50-Hz-Magnetfeldschirmung (EMV-Schirmung)	< 1 μT @ 1 m bis 3'000A (nur mit geschirmten Schienen- elementen und Kupplungen)	DIN EN 61439-6 NISV SR 814.710
Erdbebennachweis (in Kombination mit Multifix)	Zone Z3b, Baugrundklasse E, Bauwerksklasse III	SIA 261 Eurocode 8
Schocksicherheit (in Kombination mit Multifix)	Schutzgrad Basisschutz	TW Schock 1995

Giessharzisolierung: Farbe	grau-braun (ähnlich RAL 7044)	
Isolationswiderstand	> 10 ¹⁰ Ω	
Kriechstromfestigkeit	KC 600	
Elastizitätsmodul	14.5 kN/mm ²	
Zugfestigkeit	26 N/mm ²	
Druckfestigkeit	95 N/mm ²	
Ausdehnungskoeffizient	19 x 10-6 mm/mm°C	
thermische Leitfähigkeit	1.34 W/mK	

^{*} Der Bauartnachweis nach IEC 61439 ersetzt die bisherigen Typprüfungen nach DIN EN 60439-1 und DIN EN 60439-2.

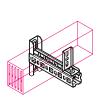
Beschreibung


Schienenverteiler LANZ HE IP68

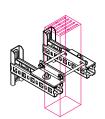
5 Leiter Schienenverteiler 3L, N, PE. Wahlweise Kupfer- oder Aluminium-Leiter. Vollständig in Giessharz (Polymerbeton) vergossen. Hohe, schlanke Leiter: Minimierung des Skineffekts. Optimierte Leiterabstände: Minimierung des Proximity-Effekts

- Hervorragende thermische Eigenschaften
- Hohe Kurzschlussfestigkeit
- Hohe Isolationsfestigkeit
- Keine Korrosion der Leiter im vergossenen Bereich möglich
- Keine Kondensation im vergossenen Bereich möglich
- Sehr geringe Aussenabmessungen
- Beliebige Einbaulage (horizontal, vertikal, hochkant oder flach)
- Hohe mechanische Festigkeit
- Schlagfest und vibrationsbeständig
- Resistent gegen Schimmel- und Pilzbildung
- Vergussmasse schwer entflammbar, selbstlöschend
- Weitgehend unempfindlich gegen Lösungsmittel und Chemikalien
- Unempfindlich gegen Insekten und Termiten

Kupplung

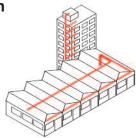

Kontaktlaschen mit grosser Überdeckung der Leiterenden.

Hochfeste, verzinkte Spannschrauben mit Arretierscheiben und Muttern.


Vergossene Verbindung in einem Stahlgehäuse.

- Langzeitstabile elektrische Kontakte bei geringem Übergangswiderstand, garantiert Langlebigkeit des Schienenverteilers.
- Grosse mechanische Festigkeit
- Hohe thermische Resistenz der Verschalung
- Absolut wasserdicht (IP68), wenn zusätzlich mit Giessharz vergossen, somit ist der ganze Schienenverteiler für den Einsatz im Freien bei jeder Witterung geeignet.

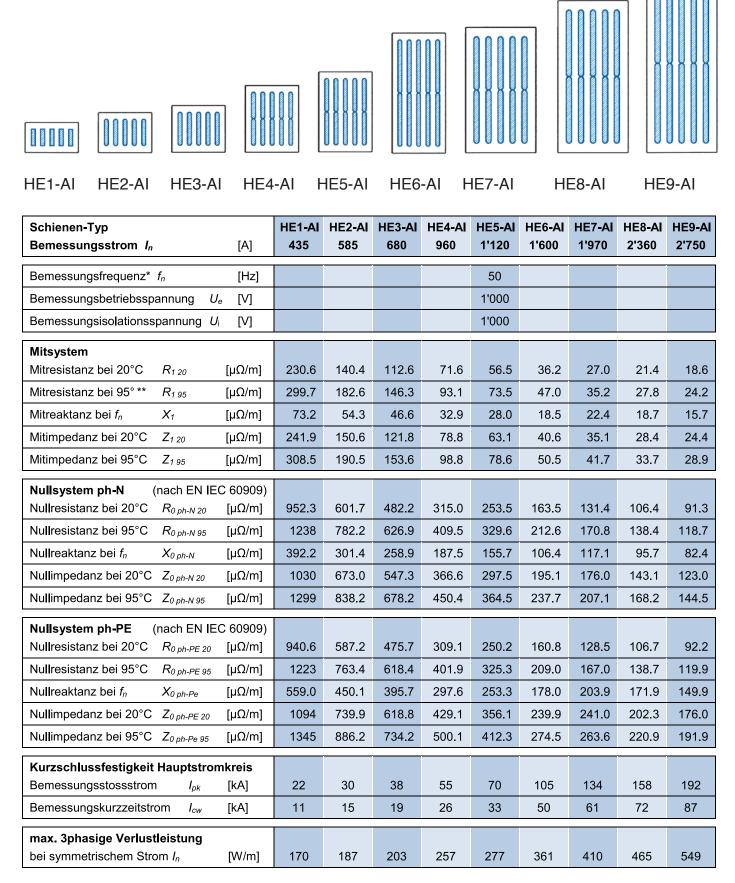
Befestigungssystem



Das Schienenmontagesystem LANZ MULTIFIX ist das ideale Befestigungssystem für die Schienenverteiler.

Wandausleger, Deckenabhängungen sowie Steigleitungs-Konsolen lassen sich mühelos zusammenstellen und montieren, sie sind äusserst stabil und platzsparend.

Auch Fixpunkt-Befestigungen, für die Kontrolle der Ausdehnungsrichtung der Schienenverteiler, sind problemlos erstellbar.


Die Schienenverteiler LANZ HE werden überall dort mit grossem Vorteil eingesetzt, wo grössere Ströme zu übertragen sind.

Als Übertragungsleitung zwischen Transformator und Hauptverteiler, als Verbindung zwischen Hauptverteiler und Unterverteiler respektive Grossverbraucher.

In Fabrikhallen, Gewerbebauten, Verwaltungsgebäuden, Spitälern, Lebensmittelindustrie usw., als Steigleitung in Hochbauten mit Stockwerk-Erschliessung.

Technische Daten HE-Schienenverteiler

Aluminiumleiter, 5 Leiter (3L+N+PE), Schutzart IP68

^{*} Bemessungsströme In für DC-Betrieb, 60 Hz und andere Frequenzen auf Anfrage

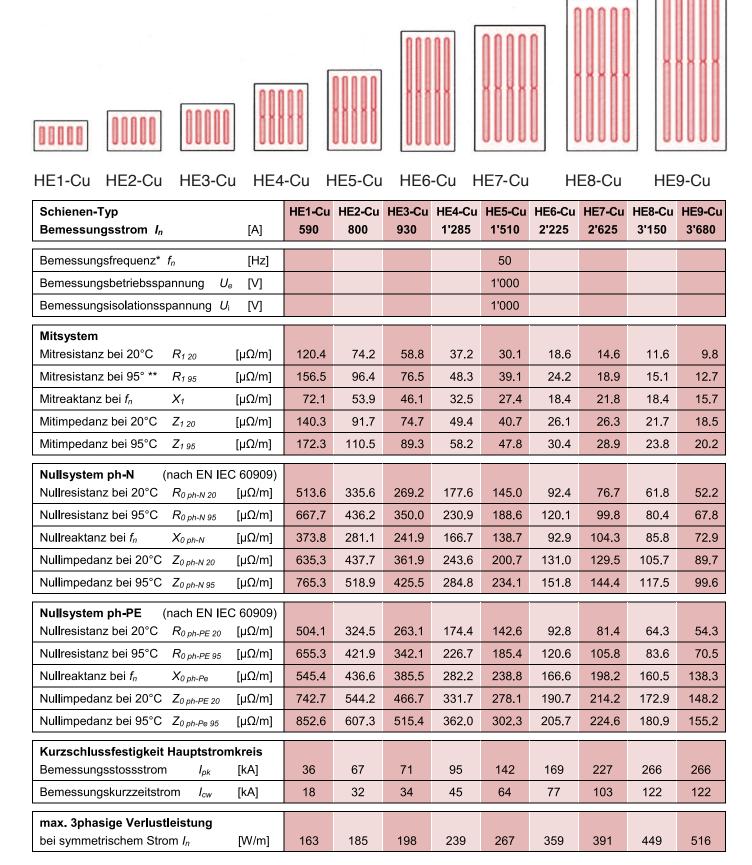
^{***} Leitertemperatur beim Strom In und 90°C Beharrungsbetriebstemperatur der Schienenoberfläche, sowie 35°C Umgebungstemperatur

Schienen-Typ		HE1-AI	HE2-AI	HE3-AI	HE4-AI	HE5-AI	HE6-AI	HE7-AI	HE8-AI	HE9-AI
Bemessungsstrom In	[A]	435	585	680	960	1'120	1'600	1'970	2'360	2'750
Leiterquerschnitte										
Aussenleiter L ₁ , L ₂ , L ₃	$[mm^2]$	142	232	292	472	585	945	1253	1573	1893
Neutralleiter	[mm ²]	142	232	292	472	585	945	1253	1573	1893
Schutzleiter	[mm ²]	142	232	292	472	585	945	1253	1573	1893
Schienenabmessungen										
Schienenbreite	[mm]	87.6	87.6	87.6	87.6	87.6	87.6	117.6	117.6	117.6
Schienenhöhe	[mm]	45	60	70	100	120	180	188	228	268
Kupplungsbreite	[mm]	140	140	140	140	140	140	177	177	177
Kupplungshöhe	[mm]	80	95	105	135	155	215	229	269	309
Kupplungshöhe mit EMV	[mm]	83.5	98.5	108.5	138.5	158.5	220.5	235.5	275.5	315.5
Kupplungslänge	[mm]	435	435	435	435	435	435	435	435	435
Kupplungslänge mit EMVg	[mm]	505	505	505	505	505	505	505	505	505
Gewichte										
Schienen ohne EMV Schirmung	[kg/m]	9.1	12.2	14.3	20.6	24.7	39.0	51.8	63.0	73.6
Schienen mit EMV Schirmung	[kg/m]	10.6	13.9	16.1	22.7	27.0	43.1	62.2	74.6	87.2

Spannungsfall ∆u: Werte pro 1 m Schienenlänge und 1 A Betriebsstrom

Leistungsfaktor										
$\cos \varphi = 0.60$	[µV/A·m]	412.9	265.0	216.6	142.3	115.2	74.5	67.6	54.8	46.9
$\cos \varphi = 0.70$	[µV/A·m]	453.9	288.6	235.0	153.6	123.7	79.9	70.4	56.8	48.8
$\cos \varphi = 0.80$	[µV/A·m]	491.3	309.4	251.1	163.2	130.9	84.4	72.1	58.0	49.8
$\cos \varphi = 0.85$	[µV/A·m]	508.0	318.4	257.9	167.1	133.8	86.1	72.3	58.0	50.0
$\cos \varphi = 0.90$	[µV/A·m]	522.5	325.6	263.2	170.0	135.7	87.2	71.8	57.5	49.6
$\cos \varphi = 0.95$	[µV/A·m]	532.7	329.8	265.9	171.0	136.1	87.3	70.0	55.9	48.3
cos φ = 1.00	[µV/A·m]	519.1	316.3	253.4	161.3	127.3	81.4	61.0	48.2	41.9

Berechnung mit der Gleichung: $\Delta u = k \cdot \sqrt{3} \cdot (R_1 \cdot \cos \varphi + X_1 \cdot \sin \varphi) \cdot I_B \cdot L$


mit k = 1 für eine konzentrierte Lastabnahme am Schienenende R_1 , X_1 Mitresistanz und Mitreaktanz beim Bemessungsstrom I_n

 I_B symmetrischer Betriebsstrom $(I_B \le I_n)$ Länge des Schienenverteilers [m]

Beispiel für eine HE7-Al: $\cos\varphi = 0.8$, $I_B = 1'800$ A, Länge L = 65 m: $\Delta u = 72.1 \,\mu\text{V/A} \cdot \text{m} \cdot 1'800 \,\text{A} \cdot 65 \,\text{m} = 8.4 \,\text{V}$

Technische Daten HE-Schienenverteiler

Kupferleiter, 5 Leiter (3L+N+PE), Schutzart IP68

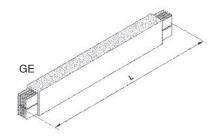
^{*} Bemessungsströme In für DC-Betrieb, 60 Hz und andere Frequenzen auf Anfrage

^{**} Leitertemperatur beim Strom In und 90°C Beharrungsbetriebstemperatur der Schienenoberfläche, sowie 35°C Umgebungstemperatur

Schienen-Typ		HE1-Cu	HE2-Cu	HE3-Cu	HE4-Cu	HE5-Cu	HE6-Cu	HE7-Cu	HE8-Cu	HE9-Cu
Bemessungsstrom <i>I</i> _n	[A]	590	800	930	1'285	1'510	2'225	2'625	3'150	3'680
Leiterquerschnitte	[mm ²]	140	222	202	465	585	945	1050	1573	1002
Aussenleiter L ₁ , L ₂ , L ₃	[mm ²]	142	232	292	400	303	945	1253		1893
Neutralleiter	[mm ²]	142	232	292	465	585	945	1253	1573	1893
Schutzleiter	[mm ²]	142	232	292	465	585	945	1253	1573	1893
Schienenabmessungen										
Schienenbreite	[mm]	87.6	87.6	87.6	87.6	87.6	87.6	117.6	117.6	117.6
Schienenhöhe	[mm]	45	60	70	100	120	180	188	228	268
Kupplungsbreite	[mm]	140	140	140	140	140	140	177	177	177
Kupplungshöhe	[mm]	80	95	105	135	155	215	229	269	309
Kupplungshöhe mit EMV	[mm]	83.5	98.5	108.5	138.5	158.5	220.5	235.5	275.5	315.5
Kupplungslänge	[mm]	435	435	435	435	435	435	435	435	435
Kupplungslänge mit EMVg	[mm]	505	505	505	505	505	505	505	505	505
Cowinhto										
Gewichte	FI / 3	40.5	40.4	00.0	05.0	40.0	00.0	00.0	440.6	400.0
Schienen ohne EMV Schirmung	[kg/m]	13.5	19.4	23.3	35.2	42.8	68.2	90.8	112.0	133.0
Schienen mit EMV Schirmung	[kg/m]	15.0	21.2	25.0	37.2	45.1	72.3	101.2	123.6	146.6

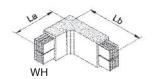
Spannungsfall Δu : Werte pro 1 m Schienenlänge und 1 A Betriebsstrom

Leistungsfaktor										
$\cos \varphi = 0.60$	[µV/A·m]	262.5	174.9	143.4	95.2	78.6	50.6	49.8	41.2	35.0
$\cos \varphi = 0.70$	[µV/A·m]	278.9	183.5	149.8	98.8	81.3	52.1	49.9	41.1	34.8
$\cos \varphi = 0.80$	[µV/A·m]	291.8	189.6	153.9	100.7	82.7	52.7	48.8	40.0	33.9
cos φ = 0.85	[µV/A·m]	296.2	191.1	154.7	100.8	82.6	52.4	47.7	39.0	33.0
$\cos \varphi = 0.90$	[µV/A·m]	298.4	191.0	154.1	99.8	81.6	51.6	45.9	37.4	31.7
$\cos \varphi = 0.95$	[µV/A·m]	296.5	187.8	150.8	97.1	79.2	49.8	42.9	34.8	29.4
$\cos \varphi = 1.00$	[μV/A·m]	271.1	167.0	132.5	83.7	67.7	41.9	32.7	26.2	22.0


Berechnung mit der Gleichung: $\Delta u = k \cdot \sqrt{3} \cdot (R_1 \cdot \cos \varphi + X_1 \cdot \sin \varphi) \cdot I_B \cdot L$

mit k = 1 für eine konzentrierte Lastabnahme am Schienenende R_1 , X_1 Mitresistanz und Mitreaktanz beim Bemessungsstrom I_n

 I_B symmetrischer Betriebsstrom $(I_B \le I_n)$ Länge des Schienenverteilers [m]


Beispiel für eine HE6-Cu: $\cos\varphi = 0.8$, $I_B = 1'800$ A, Länge L = 65 m: $\Delta u = 52.7 \,\mu\text{V/A·m} \cdot 1'800 \,\text{A} \cdot 65 \,\text{m} = \underline{6.2 \,\text{V}}$

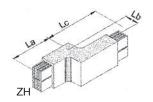
Die LANZ-HE-Elemente

Gerade Elemente GE

Тур	Länge L mm				
GE	min. 400 max. 3000				

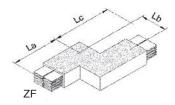
Winkel-Elemente hochkant WH

Тур	La mm	Lb mm
WH	350	350-1250


An Stelle der variablen Länge Lb kann La als Variable gewählt werden.

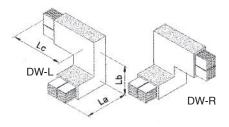
Winkel-Elemente flach WF

Тур	La mm	Lb mm
WF	350	350-1300


An Stelle der variablen Länge Lb kann La als Variable gewählt werden.

Z - Elemente hochkant ZH

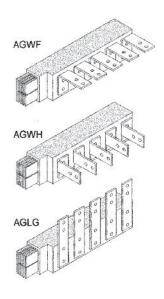
Тур	La mm	Lb mm	Lc mm
ZH	300	100-600	300-950


An Stelle der variablen Länge Lc kann La als Variable gewählt werden.

Z - Elemente flach ZF

Тур	La mm	Lb mm	Lc mm
ZF	300	100-600	300-900

An Stelle der variablen Länge Lc kann La als Variable gewählt werden.

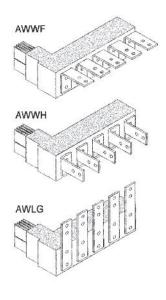

Doppelwinkel-Elemente DW*

Тур	La mm	Lb mm	Lc mm	
DW-L	300	100-600	300-900	
DW-R	300	100-600	300-900	

An Stelle der variablen Länge Lc kann La als Variable gewählt werden. Alle Masse (L, La, Lb, Lc) sind Systemmasse, d.h. Masse von Schienenmitte bis Kupplungsmitte.

* **Hinweis:** ab HE6 Lb = 200 – 600

Die LANZ-HE-Anschluss-Elemente



Für die Verbindung Schienenverteiler-Transformator, respektive Schaltkasten, stehen Standard-Anschluss-Elemente zur Verfügung.

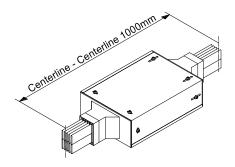
Die Anschluss-Elemente sind immer mit Kupfer-Leitern ausgerüstet. Für die Verbindung von Anschluss-Elementen mit Schienenverteilern mit Aluminium-Leitern werden spezielle Anschluss-Kupplungen verwendet.


Die Anschluss-Elemente sind in 2 Grundausführungen mit je 2 Lagen des Erdleiters und 3 Anschluss-Laschen in folgenden Varianten erhältlich:

Gerade Anschluss-Elemente AG	
AGWF	Winkellaschen flach
AGWH	Winkellaschen hochkant
AGLG	Laschen gerade

Winkel Anschluss-Elemente AW	
AWWF	Winkellaschen flach
AWWH	Winkellaschen hochkant
AWLG	Laschen gerade

Querschnitt und Abstand der Anschluss-Laschen werden von den Bedürfnissen des Kunden bestimmt (Konfiguration der Anschlüsse im Schaltkasten oder am Transformator), wobei bestimmte Minimalmasse eingehalten werden müssen (siehe Abschnitt Planungshinweise und Dimensionierung).



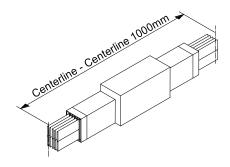
Flexible Anschluss-Bänder FB

Die Verbindung zwischen Anschluss-Element und Transformator- respektive Schaltkasten-Anschlusslasche erfolgt mittels hochflexibler Anschluss-Bänder.

Die flexiblen Anschluss-Bänder bestehen aus dünnen Kupferlamellen mit pressgeschweissten Enden.

Breite und Querschnitt der Anschluss-Bänder werden in der Regel durch die Dimensionen der Anschluss-Laschen am Transformator, respektive im Schaltkasten bestimmt. Wo immer möglich sind jedoch die im Abschnitt Planungshinweise und Dimensionierung aufgeführten Standard-Anschluss-Bänder zu verwenden.

Dehnungs-Elemente DE

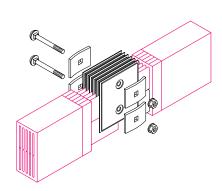

Die Erwärmung des Schienenverteilers bei Strombelastung bewirkt eine Längsausdehnung. Zur Kompensation dieser Ausdehnung sind bei längeren geraden Schienensträngen Dehnungs-Elemente einzubauen.

Schienenverteiler mit Aluminium-Leitern haben eine grössere Ausdehnung als solche mit Kupfer-Leitern. Für den Einsatz von Dehnungs-Elementen gilt folgende Faustregel:

ein Dehnungs-Element alle 20 m bei Schienen mit Aluminium-Leitern ein Dehnungs-Element alle 30 m bei Schienen mit Kupfer-Leitern

Wobei zu berücksichtigen ist, dass kleinere Abwinklungen wie Z-Elemente nicht als Unterbrechung des geraden Schienenstranges gelten.

Für genauere Angaben zur Bestimmung des Einbaus von Dehnungs-Elementen siehe Abschnitt Planungshinweise und Dimensionierung.



Phasenwechsel-Elemente PW

Bei längeren Schienenverteilern führen die ungleichen Impedanzbeläge der Aussenleiter zu unsymmetrischen Spannungsabfällen.

Um diese Spannungsabfälle auszugleichen, werden bei Leitungslängen grösser als 80 m Phasenwechsel-Elemente eingesetzt, wobei stets drei solche Elemente pro Schienenstrang erforderlich sind.

Das erste Element wird nach ½ der Schienenlänge eingebaut, das zweite Element nach ⅓ der Schienenlänge und das dritte kurz vor Schienenende beim Anschluss-Element.

Kupplungen KPL

Die einzelnen Elemente der Schienenverteiler werden mit Kupplungen miteinander verbunden.

Der Grundaufbau ist für alle Kupplungstypen gleich (siehe Beschreibung auf Seite 1). Für alle Schienenelemente werden Kupfer Kupplungen verwendet.

Die Schutzart der Kupplung bestimmt die Schutzart des gesamten Schienenverteilers. Erhältlich ist:

IP68 giessharzvergossen, absolut dicht, dauerhaftes Eintauchen

Planungshinweise und Dimensionierung

Auswahl des Schienenverteilers

Um geeignete HE-Schienenverteiler für eine Energieverteilanlage auswählen zu können, müssen gewisse Angaben über den Aufbau, die Art der Verbraucher und die vorherrschenden Umgebungsbedingungen bekannt sein.

Der **Betriebsstrom** I_b in der Anlage kann mit der Bemessungsbetriebsspannung U_0 für den Stromkreis, dem Belastungsfaktor b und dem Einspeisefaktor α berechnet bzw. abgeschätzt werden.

Für den 3ph-Betriebsstrom lb gilt:

(α =1 für einseitige Einspeisung, α =0.5 bei zweiseitiger

Einspeisung oder Mitteneinspeisung)

$$I_b = \frac{\alpha \cdot b \cdot P_{\Sigma}}{\sqrt{3} \cdot U_e \cdot \cos \varphi} \cdot 10^3$$

Belastungsfaktor

(typ. Werte siehe z.B. EN 61439-1, Tabelle 1)

 $cos\phi$ mittlerer Leistungsfaktor

l_b Betriebsstrom [A]

U_e Bemessungsbetriebsspannung [V] (Spannung zwischen den Aussenleitern)

P_Σ totale Leistung der Verbraucher [kW]

Im Normalfall wird ein HE-Schienenverteiler so gewählt, dass gilt: **Bemessungsstrom** $I_n \ge I_b$.

Ist ein bestimmter max. Spannungsabfall ΔU für die Anlage vorgegeben, oder sollen die Übertragungsverluste im Betrieb einen bestimmten Wert nicht überschreiten, sind alternativ HE-Schienentypen mit entsprechend höherem Leiterquerschnitt und Bemessungsstrom auszuwählen.

60-Hz-Betrieb der Schienenverteiler

Der **60-Hz-Bemessungsstrom** In60Hz für einen HE-Schienenverteiler berechnet sich mit dem bekannten 50-Hz-Bemessungsstrom In und dem entsprechenden Korrekturfaktor k60Hz wie folgt:

$$I_{n60Hz} = k_{60Hz} \cdot I_n$$

Schienen mit Al-Leiter				
Тур	k _{60Hz}			
HE1-AI	0.999			
HE2-AI	0.999			
HE3-AI	0.998			
HE4-AI	0.997			
HE5-AI	0.996			
HE6-AI	0.993			
HE7-AI	0.991			
HE8-AI	0.989			
HE9-AI	0.987			

Schienen mit Cu-Leiter				
Тур	k _{60Hz}			
HE1-Cu	0.998			
HE2-Cu	0.997			
HE3-Cu	0.995			
HE4-Cu	0.993			
HE5-Cu	0.990			
HE6-Cu	0.986			
HE7-Cu	0.983			
HE8-Cu	0.980			
HE9-Cu	0.977			

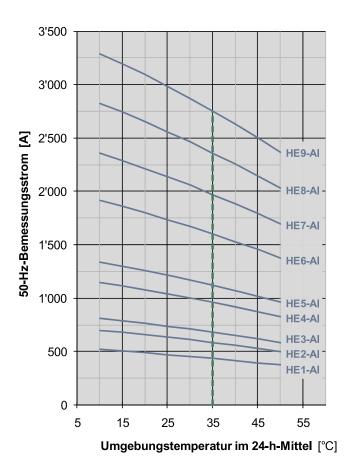
Erfolgt der 60-Hz-Betrieb des Schienenverteilers bei Temperaturen, die vom genormten 24-h-Mittel von 35 °C abweichen, werden zunächst der korrigierte 50-Hz-Bemessungsstrom mit Hilfe der Diagramme auf der nächsten Seite bestimmt und erst danach der entsprechende 60-Hz-Bemessungsstrom.

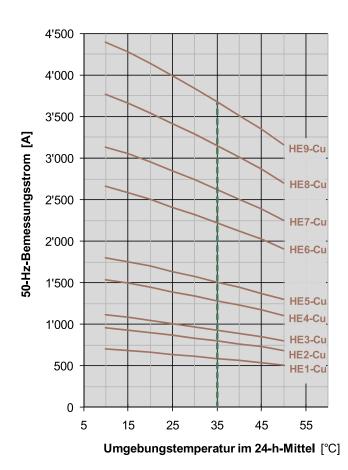
Betrieb mit Gleichspannung oder anderen Netzfrequenzen

Die HE-Schienenverteiler mit Al- und Cu-Leiter können auch mit Gleichspannung oder mit Netzfrequenzen ungleich 50 Hz oder 60 Hz betrieben werden. Je nach der Leiterzahl der Schienenverteiler und der Zuordnung der Pol- oder Phasenleiter ergeben sich unterschiedliche Bemessungsströme.

Bitte fragen Sie uns für die entsprechenden Bemessungsströme an.

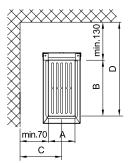
Einfluss der EMV-Abschirmung auf den Bemessungsstrom

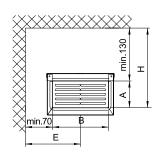

Die geschirmten HE-Schienenverteiler sind mit hochwirksamen Schirmblechen versehen. Sie sind damit bestens geeignet für den Neubau von **strahlungsarmen Energieverteilanlagen**, aber auch für die wirtschaftliche **1-μT-Sanierung** von Altanlagen.

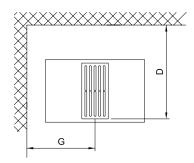

Zur Erhöhung der thermischen Abstrahlung sind die geschirmten HE-Schienenverteiler lackiert. Damit wird erreicht, dass die Bemessungsströme der EMV-Schienenverteiler annähernd gleich gross sind wie die der ungeschirmten Schienentypen. Auf zusätzliche Korrekturfaktoren kann damit verzichtet werden.

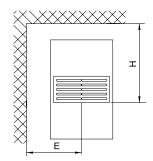
Einfluss der Umgebungstemperatur auf den Bemessungsstrom

Die 50-Hz-Bemessungsströme In im vorliegenden HE-Katalog gelten für eine **Umgebungstemperatur** von **35 °C im 24-Stunden-Mittel** und **max. 40 °C**. Diese Werte sind in der Norm EN 61439-1 festgelegt für die sog. Innenraum- oder Freiluftaufstellung.


Für abweichende Umgebungstemperaturen können die zulässigen Bemessungsströme mit Hilfe der nachfolgenden Diagramme bestimmt werden:

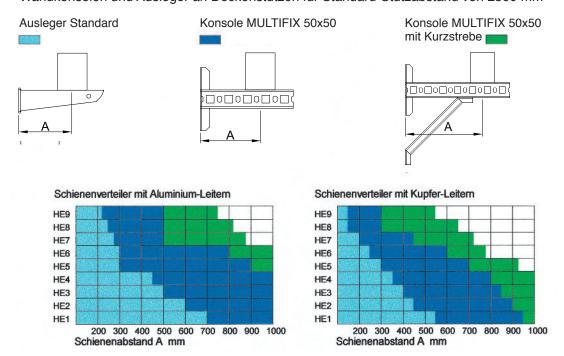





Einbaumasse der Schienenverteiler LANZ HE

Kleinste Wand- und Deckenabstände für Schienenverteiler mit und ohne Dehnungs-Element.

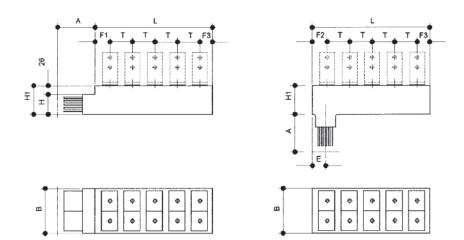
Schienenverteiler ohne Dehnungs-Element


Schienenverteiler mit Dehnungs-Element

	HE1	HE2	HE3	HE4	HE5	HE6	HE7	HE8	HE9	
Α		88						118		
В	45	60	70	100	120	180	188	228	268	
С		140					155			
D	295	310	320	350	370	430	438	478	518	
E	95	100	105	120	130	160	165	185	205	
F	330						205			
G	200									
Н	240						368			

Masse in mm

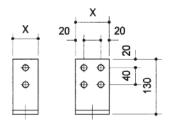
Auswahl des Befestigungssystems


Wandkonsolen und Ausleger an Deckenstützen für Standard-Stützabstand von 2500 mm

Für Wandbefestigung sind Dübel mit einer Mindest-Zugbelastung von 5000 N in Beton β_{ω} 25 N/mm² zu verwenden.

Dimensionen der Anschluss-Elemente, Anschluss-Laschen und flexible Anschluss-Bänder

Anschluss-Elemente

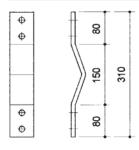


Тур	Amin/max.	В	Е	F1/F3	F2/F3	H1	L _{min}	T _{min=stand}	T _{max}
HE1 HE2 HE3 HE4 HE5 HE6	100/150	45 60 70 100 120 180	63	50/40 60/50 60/50 60/50 60/50 60/50	70/40 80/50 80/50 80/50 80/50 80/50	115	370/390 470/490	70 90 90 90 90 90	200 250 250 300 300 300
HE7 HE8 HE9	150/500	188 228 268	75	70/60 70/60 70/60	90/60 90/60 90/60	140	570/590	110 110 110	500 500 500

Anschlusslänge A und Laschenteilung T sind innerhalb der gesetzten Limiten variable Grössen.

Anschluss-Laschen

Querschnitt der Laschen und die Bohrungen (∅ 14 mm) für die Standard-Anschluss-Elemente entsprechen grundsätzlich den Normen DIN 46206. Wenn immer möglich sollten diese Standard-Anschluss-Laschen verwendet werden.

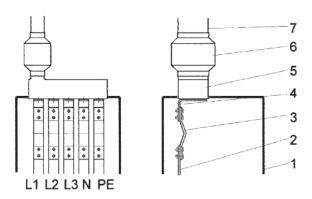


Die Praxis zeigt, dass in vielen Fällen die Anschluss-Laschen-Abmessungen von den Bedürfnissen im Schaltkasten resp. am Transformator bestimmt werden. Solche Anpassungen sind, unter Respektierung der unten angeführten minimalen (= Standard) Laschenbreite, jederzeit möglich.

Laschenbreite X: für Grösse HE1 50 mm

für Grösse HE2-HE6 60 mm für Grösse HE7-HE9 80 mm

Flexible Anschluss-Bänder

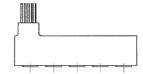

Breite und Bohrungen der Anschluss-Bänder entsprechen den oben dargestellten Anschluss-Laschen.

Die Standardlänge ist 310 mm. Andere Längen auf Anfrage möglich.

Ausführung: dünne Kupferlamellen mit pressgeschweissten Enden.

Bestimmung der Anschluss-Elemente

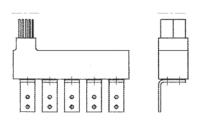
Der Anschluss des Schienenverteilers an den Transformator respektive Schaltkasten erfolgt mit Anschluss-Elementen.

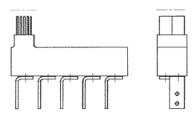

Typischer Anschluss eines Schienenverteilers von oben an den Schaltkasten

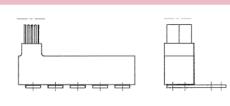
- 1 Schaltkasten-Gehäuse
- 2 Anschlussfahne im Schaltkasten
- 3 Flexibles Anschluss-Band
- 4 Anschluss-Lasche am Anschluss-Element
- 5 Anschluss-Element
- 6 Kupplung
- 7 Schienenverteiler HE

Vorgehen bei der Bestimmung des Anschluss-Elements

1. Anhand der Linienführung den Typ des Anschluss-Elements bestimmen.

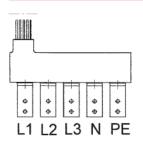


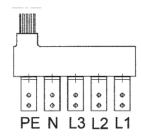



gerades Anschluss-Element AG..

Winkel Anschluss-Element AW..

2. Lage der Anschluss-Laschen bestimmen.




Winkellaschen flach ..WF

Winkellaschen hochkant ..WH

Laschen gerade ..LG

3. Reihenfolge der Leiter bestimmen.

Erdleiter am Ende

Erdleiter am Anfang

Die komplette Typenbezeichnung für ein Anschluss-Element ist zusammengesetzt aus den einzelnen Kürzeln, z.B. gerades Anschluss-Element mit Winkellaschen flach heisst AGWF.

Ausschreibungstext

Niederspannungs-Schienenverteiler

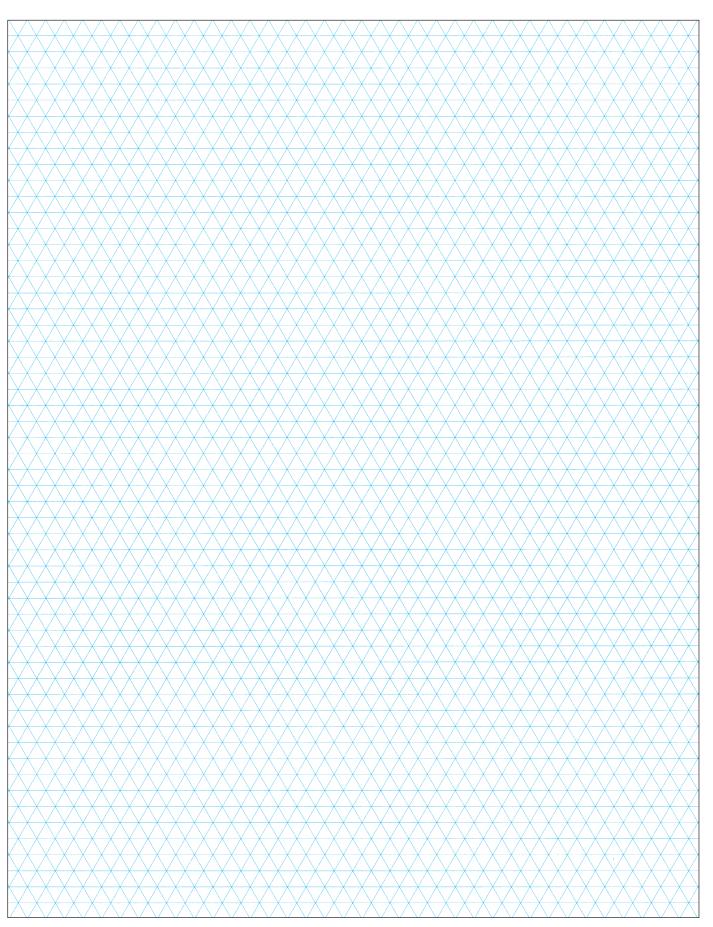
Für den Energietransport ist ein nach IEC 439-1 und 2, EN 61439 Teil 1 und 2 und DIN VDE 0660 Teil 500 und 502 typengeprüfter, giessharzvergossener Schienenverteiler einzusetzen.

Die Leiterpakete sind vollständig in einem mechanisch äusserst resistenten Polymerbeton eingegossen, welcher zugleich den korrosionsfreien, schlagfesten Schienenkasten bildet.

Der Schienenverteiler besteht aus fabrikfertigen Systemkomponenten mit der Möglichkeit, alle Elemente, insbesondere die Anschluss-Elemente, objektspezifisch anzufertigen.

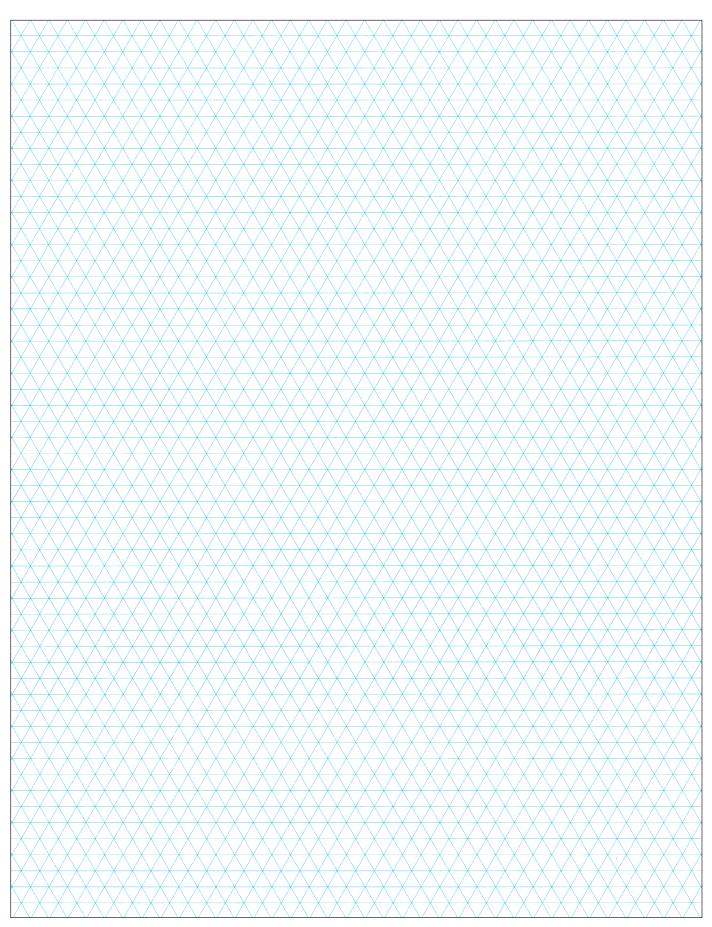
Im Angebot ist der betriebsfertige Schienenzug inklusive aller erforderlichen Spezialteile, wie Dehnungs-Elemente, Phasenwechsel-Elemente sowie das gesamte Befestigungsmaterial inklusive Fixpunktbefestigungen zu integrieren, auch dann, wenn diese nicht speziell aufgelistet sind.

Als Schnittstelle gelten die Anschlusslaschen im Schaltkasten respektive am Transformator.


Planung, Transport, Montage sowie Inbetriebsetzung des beschriebenen Schienenzuges müssen im Angebot enthalten sein.

Leistungsdaten: Betriebsstrom Α V Betriebsspannung Betriebsfrequenz Hz **Anzahl Leiter** Leiterquerschnitt L1,L2,L3,N 100% Leiterquerschnitt PΕ Leitermaterial Schutzart der Installation IP68

Bemessungsisolierspannung		V	
Wirkwiderstand	R ₂₀	$\mu\Omega$ /m	
Wirkwiderstand	Rie	$\mu\Omega/m$	
Kurzschlussfestigkeit	I pk	kA	
Kurzschlussfestigkeit	lcw	kA	
Schienenabmessung	Breite	mm	
	Höhe	mm	

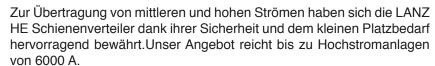


Fax an: 062 388 24 24

□ Bestellung				
☐ Offert-Anfrage				
☐ Wir wünschen Ihren Besuch				
Bitte Zutreffendes ankreuzen	Kom			
EMPFÄNGER:	ABSENDER:			
lanz oensingen ag	Firma:			
Südringstrasse 2	Strasse:			
4702 Oensingen	PLZ/Ort:			
z. Hd.	Referenz:			
Tel.: 062 388 21 21	Tel.:			
Fax: 062 388 24 24	Fax:			
E-Mail: info@lanz-oens.com	E-Mail:			

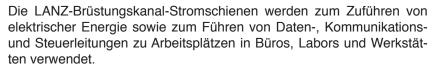
Pos.	Menge	Bez	eichnung	Bestell-Nr.	Preis
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
Datum:			Unterschrift:		

Weitere hochwertige LANZ-Produkte


LANZ-EAE-Schienenverteiler 20-100 A (Lichtschienen), 160-6300 A (Verteilschienen)

LANZ liefert Schienenverteiler inkl. Befestigungsmaterial für die preisgünstige elektrische Anspeisung von Beleuchtungsbändern mit Fluoreszenzleuchten, Metalldampflampen, Rinnenstrahlern, Kleinverbraucher für Elektrohandwerkzeuge und andere Geräte.

LANZ-EAE-Verteilschienen 160-6300 A sind bestens geeignet für Fabriken, Montagehallen, Garagen, Depots, Handwerksbetriebe, Ladenlokale und Supermärkte.


LANZ HE - die weltbesten Stromschienen Schienenverteiler bis 6000 A IP68

LANZ HE Schienenverteiler vereinfachen die Planung. Sie gewährleisten Sicherheit und Flexibilität der Stromversorgung für die gesamte Lebensdauer der Anlage.

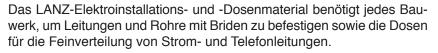
LANZ-Brüstungskanal-Stromschienen

Die Stromschienen, die Aufsteck- und die Zusatz-Kanäle lassen sich einzeln oder kombiniert montieren und ergeben saubere und kostengünstige Installationen.

LANZ-Doppelboden-Installationsmaterial

Für die im Hohlraum unter Doppelböden zu verlegenden Starkstrom-, Schwachstrom-, Kommunikations- und Notnetze liefert LANZ das gesamte erforderliche Installationsmaterial in modernster Ausführung:

- LANZ-Boden-Anschlussdosen für 1-4 Arbeitsplätze
- LANZ-Kabeldurchlässe 8-fach und 16-fach
- LANZ-Kombischienen und -Flachgitter


Fragen Sie LANZ an. Wir haben Erfahrung und beraten Sie.

Elektro-Installationsmaterial von LANZ

Ihr Elektro-Grosshändler:

CH-4702 Oensingen Südringstrasse 2

Tel. ++41/62 388 21 21

Fax ++41/62 388 24 24

e-mail: info@lanz-oens.com